Title of article :
Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds
Author/Authors :
Cuervo، نويسنده , , Montserrat R. and Asedegbega-Nieto، نويسنده , , Esther and Dيaz، نويسنده , , Eva and Vega، نويسنده , , Aurelio and Ordٌَez، نويسنده , , Salvador and Castillejos-Lَpez، نويسنده , , Eva and Rodrيguez-Ramos، نويسنده , , Inmaculada، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
10
From page :
264
To page :
273
Abstract :
The effect of the chemical activation, using HNO3, of a commercial carbon nanofiber (CNF) on its surface chemistry and adsorption properties is studied in this work. The adsorption of different alkanes (linear and cyclic), aromatic compounds and chlorohydrocarbons on both the parent and the oxidized CNF were compared. Temperature-programmed desorption results, in agreement with X-ray photoelectron spectroscopy experiments, reveal the existence of oxygen groups on the surface of the treated CNF. Capacity of adsorption was derived from the adsorption isotherms, whereas thermodynamic properties (enthalpy of adsorption, surface free energy characteristics) have been determined from chromatographic retention data. Both the capacity and the strength of adsorption decrease after the oxidant treatment of the carbon nanofibers, although in the case of chlorinated compounds the specific component of the surface energy shows an important increase. For n-alkanes and cyclic compounds, it was demonstrated that the presence of oxygen surface groups does not affect their interaction, the morphology of the surface being the key parameter. The oxidation of the nanofiber leads to steric limitations of the adsorption. In the adsorption of aromatic compounds, these limitations are compensated by the nucleophilic interactions between the aromatic ring and surface oxygenated groups, leading to similar performances of both materials. The absence of nucleophilic groups in the chlorinated compounds hinders their adsorption on the activated nanofibers.
Keywords :
Inverse gas chromatography , Functionalization , Carbon nanofibers , Adsorption
Journal title :
Journal of Chromatography A
Serial Year :
2008
Journal title :
Journal of Chromatography A
Record number :
1510682
Link To Document :
بازگشت