Title of article :
False-positive reduction in CAD mass detection using a competitive classification strategy
Author/Authors :
Li، Lihua نويسنده , , Zheng، Yang نويسنده , , Zhang، Lei نويسنده , , Clark، Robert A. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
High false-positive (FP) rate remains to be one of the major problems to be solved in CAD study because too many false-positively cued signals will potentially degrade the performance of detecting true-positive regions and increase the call-back rate in CAD environment. In this paper, we proposed a novel classification method for FP reduction, where the conventional "hard" decision classifier is cascaded with a "soft" decision classification with the objective to reduce false-positives in the cases with multiple FPs retained after the "hard" decision classification. The "soft" classification takes a competitive classification strategy in which only the "best" ones are selected from the pre-classified suspicious regions as the true mass in each case. A neural network structure is designed to implement the proposed competitive classification. Comparative studies of FP reduction on a database of 79 images by a "hard" decision classification and a combined "hard"-"soft" classification method demonstrated the efficiency of the proposed classification strategy. For example, for the high FP sub-database which has only 31.7% of total images but accounts for 63.5% of whole FPs generated in single "hard" classification, the FPs can be reduced for 56% (from 8.36 to 3.72 per image) by using the proposed method at the cost of 1% TP loss (from 69% to 68%) in whole database, while it can only be reduced for 27% (from 8.36 to 6.08 per image) by simply increasing the threshold of "hard" classifier with a cost of TP loss as high as 14% (from 69% to 55%).
Keywords :
Fault current limiter , short circuit current , transient over voltage , power quality
Journal title :
MEDICAL PHYSICS
Journal title :
MEDICAL PHYSICS