Title of article :
Speed-resolution properties of columns packed with new 4.6 μm Kinetex-C18 core–shell particles
Author/Authors :
Gritti، نويسنده , , Fabrice and Guiochon، نويسنده , , Georges، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The achievable separation speed and resolution of columns packed with the new 4.6 μm Kinetex particles were characterized by their permeability and their plate heights, measured meticulously. Their specific permeabilities range between 1.81 and 1.95 × 10−10 cm2 and their external porosities between 0.394 and 0.405. The efficiencies of the eluted peaks measured by numerical integration of the whole band concentration provided minimum reduced plate heights for uracil (non-retained) and naphthalene (retained) between 1.3 and 1.5 (H = 6.0–6.9 μm) for two 4.6 mm × 150 mm replicate columns of Kinetex and between 1.6 and 2.0 (H = 7.4–9.2 μm) for two narrow-bore 2.1 mm × 150 mm replicate columns. The most efficient 4.6 mm × 150 mm Kinetex column shows a deviation of one reduced plate height h unit with respect to the infinite diameter column (no wall, no inlet, no outlet endfitting) at high speed. Eventually, the separation speed and the resolution of columns packed with 4.6 μm core–shell Kinetex particles are better or equivalent to those of columns packed with 2.5 μm fully porous particles for hold-up times larger than only 10 s. These core–shell materials are virtually equivalent to the second generation of silica monolithic columns with the advantage of operating well at pressure drops larger than 200 bar.
Keywords :
Core–shell particles , Eddy diffusion , Column-to-column repeatability , Longitudinal diffusion , Solid–liquid mass transfer resistance , Kinetex-C18
Journal title :
Journal of Chromatography A
Journal title :
Journal of Chromatography A