Author/Authors :
Kostanian، نويسنده , , A.E.، نويسنده ,
Abstract :
In conventional chromatography, a solute is usually viewed to be longitudinally transported only in the mobile phase, remaining longitudinally motionless in the stationary phase. In counter-current chromatography, both phases undergo intense mixing in the variable force field of a coil planet centrifuge and longitudinal dispersion of matter in the stationary phase is not to be excluded. To take into account longitudinal mixing in both phases, a cell model of chromatographic process is proposed in which the number of perfectly mixed cells n is determined by the rates of mixing in stationary (DS) and mobile (Dm) phases by the equation n=LF/(2AcDm)(1+Sf(λ−1)) with λ=KDDS/Dm (F, L, Ac and KD are the mobile phase flow-rate, column length, column cross-section and distribution ratio, respectively). This equation has been derived by comparing the discontinuous cell model with continuous diffusion assuming equilibrium conditions. Parameter determination and their relationships are discussed.