Title of article :
ZARISKI-LIKE SPACES OF CERTAIN MODULES
Author/Authors :
FAZAELI MOGHIMI، H نويسنده Department of Mathematics, University of Birjand, P.O. Box 97175-615, Birjand, Iran , , Rashedi، F نويسنده Department of Mathematics, University of Birjand, P.O. Box 97175-615, Birjand, Iran ,
Issue Information :
دوفصلنامه با شماره پیاپی 0 سال 2013
Pages :
15
From page :
23
To page :
37
Abstract :
Let R be a commutative ring with identity and M be a unitary R-module. The primary-like spectrum SpecL(M) is the collection of all primary-like submodules Q such that M=Q is a primeful R-module. Here, M is de ned to be RSP if rad(Q) is a prime submodule for all Q 2 SpecL(M). This class contains the family of multiplication modules properly. The purpose of this paper is to introduce and investigates a new Zariski space of an RSP module, called a Zariski-like space. In particular, we provide conditions under which the Zariski-like space of a multiplication module has a subtractive basis.
Journal title :
Journal of Algebraic Systems
Serial Year :
2013
Journal title :
Journal of Algebraic Systems
Record number :
1518659
Link To Document :
بازگشت