Title of article
GA-PSO-Optimized Neural-Based Control Scheme for Adaptive Congestion Control to Improve Performance in Multimedia Applications
Author/Authors
Sheikhan، Mansour نويسنده , , Hemmati، Ehasn نويسنده Department of Electronic Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran , , Shahnazi، Reza نويسنده Modeling and Optimization Research Center in Science and Engineering, South Tehran Branch, Tehran, Islamic Azad University, Iran. ,
Issue Information
فصلنامه با شماره پیاپی 20 سال 2012
Pages
13
From page
11
To page
23
Abstract
Active queue control aims to improve the overall communication network throughput, while providing lower delay and small packet loss rate. The basic idea is to actively trigger packet dropping (or marking provided by explicit congestion notification (ECN)) before buffer overflow. In this paper, two artificial neural networks (ANN)-based control schemes are proposed for adaptive queue control in TCP communication networks. The structure of these controllers is optimized using genetic algorithm (GA) and the output weights of ANNs are optimized using particle swarm optimization (PSO) algorithm. The controllers are radial bias function (RBF)-based, but to improve the robustness of RBF controller, an error-integral term is added to RBF equation in the second scheme. Experimental results show that GA- PSO-optimized improved RBF (I-RBF) model controls network congestion effectively in terms of link utilization with a low packet loss rate and outperforms Drop Tail, proportional-integral (PI), random exponential marking (REM), and adaptive random early detection (ARED) controllers.
Journal title
Majlesi Journal of Electrical Engineering
Serial Year
2012
Journal title
Majlesi Journal of Electrical Engineering
Record number
1519286
Link To Document