Title of article :
The fabrication of monolithic capillary column based on poly (bisphenol A epoxy vinyl ester resin-co-ethylene glycol dimethacrylate) and its applications for the separation of small molecules in high performance liquid chromatography
Author/Authors :
Niu، نويسنده , , Wenjing and Wang، نويسنده , , Lijuan and Bai، نويسنده , , Ligai and Yang، نويسنده , , Gengliang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
A new polymeric monolith was synthesized in fused-silica capillary by in situ polymerization technique. In the polymerization, bisphenol A epoxy vinyl ester resin (VER) was used as the functional monomer, ethylene glycol dimethacrylate (EDMA) as the crosslinking monomer, 1,4-butanediol, 1-propanol and water as the co-porogens, and azobisisobutyronitrile (AIBN) as the initiator. The conditions of polymerization have been optimized. Morphology of the prepared poly (VER-co-EDMA) monolith was investigated by the scanning electron microscopy (SEM); pore properties were assayed by mercury porosimetry and nitrogen adsorption. The optimized poly (VER-co-EDMA) monolith showed a uniform structure, good permeability and mechanical stability. Then, the column was used as the stationary phase of high performance liquid chromatography (HPLC) to separate the mixture of benzene derivatives. The best column efficiency achieved for phenol was 235 790 theoretical plates per meter. Baseline separations of benzene derivatives and halogenated benzene compounds under optimized isocratic mode conditions were achieved with high column efficiency. The column showed good reproducibility: the relative standard deviation (RSD) values based on the retention times (n = 3) for run-to-run, column-to-column and batch-to-batch were less than 0.98, 1.68, 5.48%, respectively. Compared with poly (BMA-co-EDMA) monolithic column, the proposed monolith exhibited more efficiency in the separation of small molecules.
Keywords :
High Performance Liquid Chromatography , Bisphenol A epoxy vinyl ester resin , Capillary monolith , small molecules
Journal title :
Journal of Chromatography A
Journal title :
Journal of Chromatography A