Title of article :
A Lower Bound for the One-Chromatic Number of a Surface
Author/Authors :
Korzhik، نويسنده , , V.P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
17
From page :
40
To page :
56
Abstract :
Let χ1(S) be the maximum chromatic number for all graphs which can be drawn on a surface S so that each edge is crossed by no more than one other edge. It is proved that F(S) − 34 ≤ χ1(S), where F(S) = ⌊12(9 + [formula]) ⌋ is Ringel′s upper bound for χ1(S) and E(S) is the Euler Characteristic of S.
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
1994
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1525867
Link To Document :
بازگشت