Title of article :
Markovian log-supermodularity, and its applications in phylogenetics
Author/Authors :
Steel، نويسنده , , Mike and Faller، نويسنده , , Beلta، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
4
From page :
1141
To page :
1144
Abstract :
We establish a log-supermodularity property for probability distributions on binary patterns observed at the tips of a tree that are generated under any 2-state Markov process. We illustrate the applicability of this result in phylogenetics by deriving an inequality relevant to estimating expected future phylogenetic diversity under a model of species extinction. In a further application of the log-supermodularity property, we derive a purely combinatorial inequality for the parsimony score of a binary character. The proofs of our results exploit two classical theorems in the combinatorics of finite sets.
Keywords :
Markov process , AD inequality , FKG inequality , phylogenetic diversity , Tree
Journal title :
Applied Mathematics Letters
Serial Year :
2009
Journal title :
Applied Mathematics Letters
Record number :
1526102
Link To Document :
بازگشت