Title of article
List Edge and List Total Colourings of Multigraphs
Author/Authors
Borodin، نويسنده , , O.V. and Kostochka، نويسنده , , A.V. and Woodall، نويسنده , , D.R.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1997
Pages
21
From page
184
To page
204
Abstract
This paper exploits the remarkable new method of Galvin (J. Combin. Theory Ser. B63(1995), 153–158), who proved that the list edge chromatic numberχ′list(G) of a bipartite multigraphGequals its edge chromatic numberχ′(G). It is now proved here that if every edgee=uwof a bipartite multigraphGis assigned a list of at least max{d(u), d(w)} colours, thenGcan be edge-coloured with each edge receiving a colour from its list. If every edgee=uwin an arbitrary multigraphGis assigned a list of at least max{d(u), d(w)}+⌊12min{d(u), d(w)}⌋ colours, then the same holds; in particular, ifGhas maximum degreeΔ=Δ(G) thenχ′list(G)⩽⌊32Δ⌋. Sufficient conditions are given in terms of the maximum degree and maximum average degree ofGin order thatχ′list(G)=Δandχ″list(G)=Δ+1. Consequences are deduced for planar graphs in terms of their maximum degree and girth, and it is also proved that ifGis a simple planar graph andΔ⩾12 thenχ′list(G)=Δandχ″list(G)=Δ+1.
Journal title
Journal of Combinatorial Theory Series B
Serial Year
1997
Journal title
Journal of Combinatorial Theory Series B
Record number
1526304
Link To Document