Title of article :
Ramsey numbers involving graphs with large degrees
Author/Authors :
Dong، نويسنده , , Lin and Li، نويسنده , , Yusheng and Lin، نويسنده , , Qizhong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
4
From page :
1577
To page :
1580
Abstract :
Let F be a graph of order v ( F ) ≥ 3 and size e ( F ) , and let ρ ( F ) = ( e ( F ) − 1 ) / ( v ( F ) − 2 ) . It is shown that if G n is a graph of order n with average degree d n ≥ 2 , then r ( F , G n ) ≥ c ( d n log d n ) ρ ( F ) for all n , where c = c ( F ) > 0 is a constant.
Keywords :
Lov?sz Local Lemma , Ramsey number , Large degree , Spencer’s lower bound , Asymptotic
Journal title :
Applied Mathematics Letters
Serial Year :
2009
Journal title :
Applied Mathematics Letters
Record number :
1526307
Link To Document :
بازگشت