Title of article :
Sinks in Acyclic Orientations of Graphs
Author/Authors :
Gebhard، نويسنده , , David D. and Sagan، نويسنده , , Bruce E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
17
From page :
130
To page :
146
Abstract :
Greene and Zaslavsky proved that the number of acyclic orientations of a graph G with a unique sink at a given vertex is, up to sign, the linear coefficient of the chromatic polynomial. We give three proofs of this result using pure induction, noncommutative symmetric functions, and an algorithmic bijection. We also prove their result that if e=u0v0 is an edge of G then the number of acyclic orientations having a unique source at u0 and unique sink at v0 is Crapoʹs beta invariant.
Keywords :
SINK , algorithm , Acyclic orientation , Chromatic polynomial , graph , Induction
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2000
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1526703
Link To Document :
بازگشت