Title of article :
Choosability in Random Hypergraphs
Author/Authors :
Krivelevich، نويسنده , , Michael M.K. Vu، نويسنده , , Van H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
17
From page :
241
To page :
257
Abstract :
The choice number of a hypergraph H=(V, E) is the least integer s for which, for every family of color lists S={S(v): v∈V}, satisfying |S(v)|=s for every v∈V, there exists a choice function f so that f(v)∈S(v) for every v∈V, and no edge of H is monochromatic under f. In this paper we consider the asymptotic behavior of the choice number of a random k-uniform hypergraph H(k, n, p). Our main result states that for every k⩾2 and for all values of the edge probability p=p(n) down to p=O(n−k+1) the ratio between the choice number and the chromatic number of H(k, n, p) does not exceed k1/(k−1) asymptotically. Moreover, for large values of p, namely, when p⩾n−(k−1)2/(2k)+ε for an arbitrary positive constant ε, the choice number and the chromatic number of H(k, n, p) have almost surely the same asymptotic value.
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2001
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1526902
Link To Document :
بازگشت