Title of article :
On an integral inequality and application to Poisson’s equation
Author/Authors :
David Kalaj، نويسنده , , David، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
5
From page :
1016
To page :
1020
Abstract :
Let n ∈ N , m ± : = max / min { 1 , 8 n + 4 } and let I ( x ) = ⨍ B n ( 1 − | y | 2 ) ( | x − y | | y | | x − y ∗ | ) − n / 2 d y , where B n be the unit ball in R n . It is proved the double sharp inequality m − ⩽ I n ( x ) ⩽ m + . As an application, we obtain the following: if u is a solution to homogeneous Dirichlet’s problem of Poisson’s equation Δ u = g , g ∈ L ∞ , in the unit disk B 2 , then there holds the inequality | ∇ u | ⩽ 2 3 | g | ∞ .
Keywords :
Mِbius transformations , Poisson equation
Journal title :
Applied Mathematics Letters
Serial Year :
2010
Journal title :
Applied Mathematics Letters
Record number :
1527141
Link To Document :
بازگشت