Title of article :
Convergence of solutions for two delays Volterra integral equations in the critical case
Author/Authors :
Messina، نويسنده , , Eleonora and Muroya، نويسنده , , Yoshiaki and Russo، نويسنده , , Elvira and Vecchio، نويسنده , , Antonia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
4
From page :
1162
To page :
1165
Abstract :
In this paper, for the “critical case” with two delays, we establish two relations between any two solutions y ( t ) and y ∗ ( t ) for the Volterra integral equation of non-convolution type y ( t ) = f ( t ) + ∫ t − τ t − δ k ( t , s ) g ( y ( s ) ) d s and a solution z ( t ) of the first order differential equation z ̇ ( t ) = β ( t ) [ z ( t − δ ) − z ( t − τ ) ] , and offer a sufficient condition that lim t → + ∞ ( y ( t ) − y ∗ ( t ) ) = 0 .
Keywords :
Volterra integral equation with delays , Convergence of solution , Critical case , Unbounded solution
Journal title :
Applied Mathematics Letters
Serial Year :
2010
Journal title :
Applied Mathematics Letters
Record number :
1527255
Link To Document :
بازگشت