Title of article :
Hamiltonian decompositions of random bipartite regular graphs
Author/Authors :
Greenhill، نويسنده , , Catherine S. Kim، نويسنده , , Jeong Han and Wormald، نويسنده , , Nicholas C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
28
From page :
195
To page :
222
Abstract :
We prove a complete hamiltonian decomposition theorem for random bipartite regular graphs, thereby verifying a conjecture of Robinson and Wormald. The main step is to prove contiguity (a kind of asymptotic equivalence) of two probabilistic models of 4-regular bipartite graphs; namely, the uniform model, and the model obtained by taking the union of two independent, uniformly chosen bipartite Hamilton cycles, conditioned on forming no multiple edges. The proof uses the small subgraph conditioning method to establish contiguity, while the differential equation method is used to analyse a critical quantity.
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2004
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527375
Link To Document :
بازگشت