Title of article :
A revival of the girth conjecture
Author/Authors :
Kaiser، نويسنده , , Tom?? and Kr?l’، نويسنده , , Daniel and ?krekovski، نويسنده , , Riste، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
We show that for each ε>0, there exists a number g such that the circular chromatic index of every cubic bridgeless graph with girth at least g is at most 3+ε. This contrasts to the fact (which disproved the Girth conjecture) that there are snarks of arbitrarily large girth. In particular, we show that every cubic bridgeless graph with girth at least 14 has the circular chromatic index at most 7/2.
Keywords :
Edge coloring , Circular coloring , snark
Journal title :
Journal of Combinatorial Theory Series B
Journal title :
Journal of Combinatorial Theory Series B