Title of article :
A revival of the girth conjecture
Author/Authors :
Kaiser، نويسنده , , Tom?? and Kr?l’، نويسنده , , Daniel and ?krekovski، نويسنده , , Riste، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
13
From page :
41
To page :
53
Abstract :
We show that for each ε>0, there exists a number g such that the circular chromatic index of every cubic bridgeless graph with girth at least g is at most 3+ε. This contrasts to the fact (which disproved the Girth conjecture) that there are snarks of arbitrarily large girth. In particular, we show that every cubic bridgeless graph with girth at least 14 has the circular chromatic index at most 7/2.
Keywords :
Edge coloring , Circular coloring , snark
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2004
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527468
Link To Document :
بازگشت