Title of article :
Dimers, tilings and trees
Author/Authors :
Kenyon، نويسنده , , Richard W. and Sheffield، نويسنده , , Scott، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Generalizing results of Temperley (London Mathematical Society Lecture Notes Series 13 (1974) 202), Brooks et al. (Duke Math. J. 7 (1940) 312) and others (Electron. J. Combin. 7 (2000); Israel J. Math. 105 (1998) 61) we describe a natural equivalence between three planar objects: weighted bipartite planar graphs; planar Markov chains; and tilings with convex polygons. This equivalence provides a measure-preserving bijection between dimer coverings of a weighted bipartite planar graph and spanning trees of the corresponding Markov chain. The tilings correspond to harmonic functions on the Markov chain and to “discrete analytic functions” on the bipartite graph.
uivalence is extended to infinite periodic graphs, and we classify the resulting “almost periodic” tilings and harmonic functions.
Keywords :
dimers , Polygon tilings , Perfect matchings , spanning trees
Journal title :
Journal of Combinatorial Theory Series B
Journal title :
Journal of Combinatorial Theory Series B