Title of article :
Average independence polynomials
Author/Authors :
Brown، نويسنده , , J.I. and Nowakowski، نويسنده , , R.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
6
From page :
313
To page :
318
Abstract :
The independence polynomial of a graph G is the function i ( G , x ) = ∑ k ⩾ 0 i k x k , where i k is the number of independent sets of vertices in G of cardinality k. We investigate here the average independence polynomial, where the average is taken over all independence polynomials of (labeled) graphs of order n. We prove that while almost every independence polynomial has a nonreal root, the average independence polynomials always have all real, simple roots.
Keywords :
graph , Roots , polynomial , Independence
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2005
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527541
Link To Document :
بازگشت