Title of article :
Vertex colouring edge partitions
Author/Authors :
Addario-Berry، نويسنده , , L. and Aldred، نويسنده , , R.E.L. and Dalal، نويسنده , , K. and Reed، نويسنده , , B.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
A partition of the edges of a graph G into sets { S 1 , … , S k } defines a multiset X v for each vertex v where the multiplicity of i in X v is the number of edges incident to v in S i . We show that the edges of every graph can be partitioned into 4 sets such that the resultant multisets give a vertex colouring of G . In other words, for every edge ( u , v ) of G , X u ≠ X v . Furthermore, if G has minimum degree at least 1000, then there is a partition of E ( G ) into 3 sets such that the corresponding multisets yield a vertex colouring.
Keywords :
Edge weights , Vertex colours , Degree-constrained subgraphs
Journal title :
Journal of Combinatorial Theory Series B
Journal title :
Journal of Combinatorial Theory Series B