Title of article :
On the extreme eigenvalues of regular graphs
Author/Authors :
Melanie A. Adams-Cioaba، نويسنده , , Sebastian M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
7
From page :
367
To page :
373
Abstract :
In this paper, we present an elementary proof of a theorem of Serre concerning the greatest eigenvalues of k-regular graphs. We also prove an analogue of Serreʹs theorem regarding the least eigenvalues of k-regular graphs: given ε > 0 , there exist a positive constant c = c ( ε , k ) and a non-negative integer g = g ( ε , k ) such that for any k-regular graph X with no odd cycles of length less than g, the number of eigenvalues μ of X such that μ ⩽ - ( 2 - ε ) k - 1 is at least c | X | . This implies a result of Winnie Li.
Keywords :
Eigenvalues of graphs , Alon–Boppana theorem
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527676
Link To Document :
بازگشت