Title of article :
Extending precolorings to circular colorings
Author/Authors :
Albertson ، نويسنده , , Michael O. and West، نويسنده , , Douglas B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
10
From page :
472
To page :
481
Abstract :
Fix positive integers k ′ , d ′ , k, d such that k ′ / d ′ > k / d ⩾ 2 . If P is a set of vertices in a ( k , d ) -colorable graph G, and any two vertices of P are separated by distance at least 2 ⌈ k k ′ ( 2 ( k ′ d − k d ′ ) ) ⌉ , then every coloring of P with colors in Z k ′ extends to a ( k ′ , d ′ ) -coloring of G. If k ′ d − k d ′ = 1 and ⌊ k ′ / d ′ ⌋ = ⌊ k / d ⌋ , then this distance threshold is nearly sharp. The proof of this includes showing that up to symmetry, in this case there is only one ( k ′ , d ′ ) -coloring of the canonical ( k , d ) -colorable graph G k , d .
Keywords :
circular chromatic number , graph coloring , precoloring extension , distance
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527694
Link To Document :
بازگشت