• Title of article

    General fractional -factor numbers of graphs

  • Author/Authors

    Lu، نويسنده , , Hongliang and Yu، نويسنده , , Qinglin، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2011
  • Pages
    5
  • From page
    519
  • To page
    523
  • Abstract
    Let G be a graph and f an integer-valued function on V ( G ) . Let h be a function that assigns each edge to a number in [ 0 , 1 ] , such that the f -fractional number of G is the supremum of ∑ e ∈ E ( G ) h ( e ) over all fractional functions h satisfying ∑ e ∼ v h ( e ) ≤ f ( v ) for every vertex v ∈ V ( G ) . An f -fractional factor is a spanning subgraph such that ∑ v ∼ e h ( e ) = f ( v ) for every vertex v . In this work, we provide a new formula for computing the fractional numbers by using Lovász’s Structure Theorem. This formula generalizes the formula given in [Y. Liu, G.Z. Liu, The fractional matching numbers of graphs, Networks 40 (2002) 228–231] for the fractional matching numbers.
  • Keywords
    Fractional matching , f -factor , Fractional number , deficiency , Alternating trail
  • Journal title
    Applied Mathematics Letters
  • Serial Year
    2011
  • Journal title
    Applied Mathematics Letters
  • Record number

    1527711