Title of article :
The circumference of a graph with no -minor
Author/Authors :
Chen، نويسنده , , Guantao and Sheppardson، نويسنده , , Laura and Yu، نويسنده , , Xingxing and Zang، نويسنده , , Wenan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
24
From page :
822
To page :
845
Abstract :
It was shown by Chen and Yu that every 3-connected planar graph G contains a cycle of length at least | G | log 3 2 , where | G | denotes the number of vertices of G. Thomas made a conjecture in a more general setting: there exists a function β ( t ) > 0 for t ⩾ 3 , such that every 3-connected graph G with no K 3 , t -minor, t ⩾ 3 , contains a cycle of length at least | G | β ( t ) . We prove that this conjecture is true with β ( t ) = log 8 t t + 1 2 . We also show that every 2-connected graph with no K 2 , t -minor, t ⩾ 3 , contains a cycle of length at least | G | / t t − 1 .
Keywords :
Minor , connectivity , PATH , cycle , circumference
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527738
Link To Document :
بازگشت