Title of article :
An improved bound for the monochromatic cycle partition number
Author/Authors :
Gyلrfلs، نويسنده , , Andrلs and Ruszinkَ، نويسنده , , Miklَs and Sلrkِzy، نويسنده , , Gلbor N. and Szemerédi، نويسنده , , Endre، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
19
From page :
855
To page :
873
Abstract :
Improving a result of Erdős, Gyárfás and Pyber for large n we show that for every integer r ⩾ 2 there exists a constant n 0 = n 0 ( r ) such that if n ⩾ n 0 and the edges of the complete graph K n are colored with r colors then the vertex set of K n can be partitioned into at most 100 r log r vertex disjoint monochromatic cycles.
Keywords :
Edge Colorings , Monochromatic partitions , Regularity lemma
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2006
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527742
Link To Document :
بازگشت