Title of article :
Extreme eigenvalues of nonregular graphs
Author/Authors :
Melanie A. Adams-Cioaba، نويسنده , , Sebastian M. and Gregory، نويسنده , , David A. and Nikiforov، نويسنده , , Vladimir، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
4
From page :
483
To page :
486
Abstract :
Let λ 1 be the greatest eigenvalue and λ n the least eigenvalue of the adjacency matrix of a connected graph G with n vertices, m edges and diameter D. We prove that if G is nonregular, then Δ − λ 1 > n Δ − 2 m n ( D ( n Δ − 2 m ) + 1 ) ⩾ 1 n ( D + 1 ) , where Δ is the maximum degree of G. equality improves previous bounds of Stevanović and of Zhang. It also implies that a lower bound on λ n obtained by Alon and Sudakov for (possibly regular) connected nonbipartite graphs also holds for connected nonregular graphs.
Keywords :
Spectral radius , Nonregular graph , eigenvalues
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2007
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1527820
Link To Document :
بازگشت