Title of article :
On distance-regular graphs with smallest eigenvalue at least −m
Author/Authors :
Koolen، نويسنده , , J.H. and Bang، نويسنده , , S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
573
To page :
584
Abstract :
A non-complete geometric distance-regular graph is the point graph of a partial linear space in which the set of lines is a set of Delsarte cliques. In this paper, we prove that for a fixed integer m ⩾ 2 , there are only finitely many non-geometric distance-regular graphs with smallest eigenvalue at least −m, diameter at least three and intersection number c 2 ⩾ 2 .
Keywords :
Geometric distance-regular graph , Smallest eigenvalue , Geometric strongly regular graph , Partial linear space
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2010
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1528084
Link To Document :
بازگشت