Title of article :
An approximate version of Sumnerʼs universal tournament conjecture
Author/Authors :
Kühn، نويسنده , , Daniela and Mycroft، نويسنده , , Richard and Osthus، نويسنده , , Deryk، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
33
From page :
415
To page :
447
Abstract :
Sumnerʼs universal tournament conjecture states that any tournament on 2 n − 2 vertices contains a copy of any directed tree on n vertices. We prove an asymptotic version of this conjecture, namely that any tournament on ( 2 + o ( 1 ) ) n vertices contains a copy of any directed tree on n vertices. In addition, we prove an asymptotically best possible result for trees of bounded degree, namely that for any fixed Δ, any tournament on ( 1 + o ( 1 ) ) n vertices contains a copy of any directed tree on n vertices with maximum degree at most Δ.
Keywords :
trees , tournaments , Regularity lemma , digraphs
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2011
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1528153
Link To Document :
بازگشت