Title of article :
Unexpected behaviour of crossing sequences
Author/Authors :
DeVos، نويسنده , , Matt and Mohar، نويسنده , , Bojan and ??mal، نويسنده , , Robert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
16
From page :
448
To page :
463
Abstract :
The nth crossing number of a graph G, denoted c r n ( G ) , is the minimum number of crossings in a drawing of G on an orientable surface of genus n. We prove that for every a > b > 0 , there exists a graph G for which c r 0 ( G ) = a , c r 1 ( G ) = b , and c r 2 ( G ) = 0 . This provides support for a conjecture of Archdeacon et al. and resolves a problem of Salazar.
Keywords :
crossing number , torus
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2011
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1528155
Link To Document :
بازگشت