Title of article :
On the Laplacian spread of graphs
Author/Authors :
Zhai، نويسنده , , Mingqing and Shu، نويسنده , , Jinlong and Hong، نويسنده , , Yuan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
The Laplacian spread s ( G ) of a graph G is defined to be the difference between the largest eigenvalue and the second-smallest eigenvalue of the Laplacian matrix of G . Several upper bounds of Laplacian spread and corresponding extremal graphs are obtained in this paper. Particularly, if G is a connected graph with n ( ≥ 5 ) vertices and m ( n − 1 ≤ m ≤ n + 1 ) edges, then s ( G ) ≤ n − 1 with equality if and only if G is obtained from K 1 , n − 1 by adding m − n + 1 edges.
Keywords :
Spectral spread , Laplacian , Bicyclic graph
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters