• Title of article

    Threshold condition for global existence and blow-up to a radially symmetric drift–diffusion system

  • Author/Authors

    Conca، نويسنده , , Carlos and Espejo، نويسنده , , Elio، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2012
  • Pages
    5
  • From page
    352
  • To page
    356
  • Abstract
    For a class of drift–diffusion systems Kurokiba et al. [M. Kurokiba, T. Nagai, T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift–diffusion system, Commun. Pure Appl. Anal. 5 (2006) 97–106.] proved global existence and uniform boundedness of the radial solutions when the L 1 -norm of the initial data satisfies a threshold condition. We prove in this letter that this result prescribes a region in the plane of masses which is sharp in the sense that if the drift–diffusion system is initiated outside the threshold region of global existence, then blow-up is possible: suitable initial data can be built up in such a way that the corresponding solution blows up in a finite time.
  • Keywords
    Threshold condition , parabolic equations , Blow-up , Drift–diffusion
  • Journal title
    Applied Mathematics Letters
  • Serial Year
    2012
  • Journal title
    Applied Mathematics Letters
  • Record number

    1528266