Title of article :
Sharpness and generalization of Jordan’s inequality and its application
Author/Authors :
Chen، نويسنده , , Chao-Ping and Debnath، نويسنده , , Lokenath، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
6
From page :
594
To page :
599
Abstract :
Let θ ≥ 2 be a given real number, and a , b ∈ R be two parameters, and let Q ( x ; a , b , θ ) = 2 π + a ( π θ − ( 2 x ) θ ) + b ( π θ − ( 2 x ) θ ) 2 . We determine the values a = 2 π − θ − 1 θ , b = ( − π 2 + 4 + 4 θ ) π − 2 θ − 1 4 θ 2 , which provide the best approximation: sin x x ≈ Q ( x ; 2 π − θ − 1 θ , ( − π 2 + 4 + 4 θ ) π − 2 θ − 1 4 θ 2 , θ ) , 0 < x ≤ π 2 . Furthermore, we establish a sharp Jordan’s inequality, and then apply it to improve the Yang Le inequality.
Keywords :
Jordan’s inequality , Yang Le inequality , Sharpness , Generalization , Best bounds
Journal title :
Applied Mathematics Letters
Serial Year :
2012
Journal title :
Applied Mathematics Letters
Record number :
1528313
Link To Document :
بازگشت