Title of article
Relative entropy and discrete Poincaré inequalities for reducible matrices
Author/Authors
Banasiak، نويسنده , , Jacek and Namayanja، نويسنده , , Proscovia Lubega، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2012
Pages
5
From page
2193
To page
2197
Abstract
A general relative entropy functional has been used recently in Perthame (2007) [3] to provide a uniform treatment of various estimates of the decay of the exponential function ( e t A ) t ≥ 0 , where A is a matrix with positive off-diagonal entries. In this note we show that the method can be extended to general irreducible matrices. For reducible matrices, on the other hand, we show that staying within the framework of Perthame (2007) [3] only allows for control of the evolution in certain invariant subspaces of A .
Keywords
Reducible matrices , Irreducible matrices , Relative entropy , Matrix exponential function , Linear systems , Perron–Frobenius theorem
Journal title
Applied Mathematics Letters
Serial Year
2012
Journal title
Applied Mathematics Letters
Record number
1528621
Link To Document