Title of article :
k-Ordered Hamilton cycles in digraphs
Author/Authors :
Kühn، نويسنده , , Daniela and Osthus، نويسنده , , Deryk and Young، نويسنده , , Andrew، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
16
From page :
1165
To page :
1180
Abstract :
Given a digraph D, let δ 0 ( D ) : = min { δ + ( D ) , δ − ( D ) } be the minimum semi-degree of D. D is k-ordered Hamiltonian if for every sequence s 1 , … , s k of distinct vertices of D there is a directed Hamilton cycle which encounters s 1 , … , s k in this order. Our main result is that every digraph D of sufficiently large order n with δ 0 ( D ) ⩾ ⌈ ( n + k ) / 2 ⌉ − 1 is k-ordered Hamiltonian. The bound on the minimum semi-degree is best possible. An undirected version of this result was proved earlier by Kierstead, Sárközy and Selkow [H. Kierstead, G. Sárközy, S. Selkow, On k-ordered Hamiltonian graphs, J. Graph Theory 32 (1999) 17–25].
Keywords :
Hamilton cycles , directed graphs , Ordered cycles , linkedness
Journal title :
Journal of Combinatorial Theory Series B
Serial Year :
2008
Journal title :
Journal of Combinatorial Theory Series B
Record number :
1528757
Link To Document :
بازگشت