Title of article
Multi-innovation stochastic gradient algorithms for dual-rate sampled systems with preload nonlinearity
Author/Authors
Chen، نويسنده , , Jing-Hua Lv، نويسنده , , Lixing and Ding، نويسنده , , Ruifeng، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2013
Pages
6
From page
124
To page
129
Abstract
Since the stochastic gradient algorithm has a slower convergence rate, this letter presents a multi-innovation stochastic gradient algorithm for a class of dual-rate sampled systems with preload nonlinearity. The basic idea is to transform the dual-rate system model into an identification model which can use dual-rate data by using the polynomial transformation technique. A simulation example is provided to verify the effectiveness of the proposed method.
Keywords
Parameter estimation , Nonlinear system , Multi-innovation identification , Stochastic gradient , Dual-rate system
Journal title
Applied Mathematics Letters
Serial Year
2013
Journal title
Applied Mathematics Letters
Record number
1528796
Link To Document