Title of article :
Multi-innovation stochastic gradient algorithms for dual-rate sampled systems with preload nonlinearity
Author/Authors :
Chen، نويسنده , , Jing-Hua Lv، نويسنده , , Lixing and Ding، نويسنده , , Ruifeng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
6
From page :
124
To page :
129
Abstract :
Since the stochastic gradient algorithm has a slower convergence rate, this letter presents a multi-innovation stochastic gradient algorithm for a class of dual-rate sampled systems with preload nonlinearity. The basic idea is to transform the dual-rate system model into an identification model which can use dual-rate data by using the polynomial transformation technique. A simulation example is provided to verify the effectiveness of the proposed method.
Keywords :
Parameter estimation , Nonlinear system , Multi-innovation identification , Stochastic gradient , Dual-rate system
Journal title :
Applied Mathematics Letters
Serial Year :
2013
Journal title :
Applied Mathematics Letters
Record number :
1528796
Link To Document :
بازگشت