Title of article :
Energy preserving integration of bi-Hamiltonian partial differential equations
Author/Authors :
Bulent Karasozen، نويسنده , , Bülent and ?im?ek، نويسنده , , G?rkem، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
9
From page :
1125
To page :
1133
Abstract :
The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the long term preservation of the Hamiltonians and Casimir integrals, which is essential in simulating waves and solitons. Dispersive properties of the AVF integrator are investigated for the linearized equations to examine the nonlinear dynamics after discretization.
Keywords :
Energy preservation , Korteweg de Vries equation , Poisson structure , dispersion , Bi-Hamiltonian systems
Journal title :
Applied Mathematics Letters
Serial Year :
2013
Journal title :
Applied Mathematics Letters
Record number :
1529081
Link To Document :
بازگشت