Title of article :
Nonexistence of positive solutions for a class of -Laplacian boundary value problems
Author/Authors :
Hai، نويسنده , , D.D.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
We prove the nonexistence of positive radial solutions for the problem { − Δ p u = λ f ( u ) in Ω , u = 0 on ∂ Ω , where Δ p denotes the p -Laplacian, p > 1 , Ω is a ball or an annulus in R N , N > 1 , f : [ 0 , ∞ ) → R is at least p -linear, f ( 0 ) < 0 , and is not required to be increasing or to have exactly one zero. Our results extend previous nonexistence results in the literature.
Keywords :
p -Laplacian , Nonexistence , positive solutions , p -superlinear
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters