Title of article
A fast numerical solution method for two dimensional Fredholm integral equations of the second kind
Author/Authors
Xie، نويسنده , , Wenjing and Lin، نويسنده , , Fu-Rong، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
11
From page
1709
To page
1719
Abstract
In this paper we consider numerical solution methods for two dimensional Fredholm integral equation of the second kind f ( x , y ) − ∫ − 1 1 ∫ − 1 1 a ( x , y , u , v ) f ( u , v ) d u d v = g ( x , y ) , ( x , y ) ∈ [ − 1 , 1 ] × [ − 1 , 1 ] , where a ( x , y , u , v ) is smooth and g ( x , y ) is in L 2 [ − 1 , 1 ] 2 . We discuss polynomial interpolation methods for four-variable functions and then use the interpolating polynomial to approximate the kernel function a ( x , y , u , v ) . Based on the approximation we deduce fast matrix-vector multiplication algorithms and efficient preconditioners for the above two dimensional integral equations. The residual correction scheme is used to solve the discretization linear system.
Keywords
Residual correction scheme , Polynomial interpolation , Approximate matrix , Integral equation
Journal title
Applied Numerical Mathematics
Serial Year
2009
Journal title
Applied Numerical Mathematics
Record number
1529231
Link To Document