Title of article :
Interlacing theorems for the zeros of some orthogonal polynomials from different sequences
Author/Authors :
Jordaan، نويسنده , , Kerstin and Toَkos، نويسنده , , Ferenc، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
2015
To page :
2022
Abstract :
We study the interlacing properties of the zeros of orthogonal polynomials p n and r m , m = n or n − 1 where { p n } n = 1 ∞ and { r m } m = 1 ∞ are different sequences of orthogonal polynomials. The results obtained extend a conjecture by Askey, that the zeros of Jacobi polynomials p n = P n ( α , β ) and r n = P n ( γ , β ) interlace when α < γ ⩽ α + 2 , showing that the conjecture is true not only for Jacobi polynomials but also holds for Meixner, Meixner–Pollaczek, Krawtchouk and Hahn polynomials with continuously shifted parameters. Numerical examples are given to illustrate cases where the zeros do not separate each other.
Keywords :
Meixner–Pollaczek polynomials , Hahn polynomials , orthogonal polynomials , Zeros , Interlacing of zeros , Separation of zeros , Meixner polynomials , Krawtchouk polynomials
Journal title :
Applied Numerical Mathematics
Serial Year :
2009
Journal title :
Applied Numerical Mathematics
Record number :
1529271
Link To Document :
بازگشت