Title of article :
Delay-independent stability of homogeneous systems
Author/Authors :
Aleksandrov، نويسنده , , A.Yu. and Zhabko، نويسنده , , A.P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
A class of nonlinear systems with homogeneous right-hand sides and time-varying delay is studied. It is assumed that the trivial solution of a system is asymptotically stable when delay is equal to zero. By the usage of the Lyapunov direct method and the Razumikhin approach, it is proved that the asymptotic stability of the zero solution of the system is preserved for an arbitrary continuous nonnegative and bounded delay. The conditions of stability of time-delay systems by homogeneous approximation are obtained. Furthermore, it is shown that the presented approaches permit to derive delay-independent stability conditions for some types of nonlinear systems with distributed delay. Two examples of nonlinear oscillatory systems are given to demonstrate the effectiveness of our results.
Keywords :
Homogeneous systems , time-delay , lyapunov function , Oscillatory systems , asymptotic stability
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters