Title of article :
Interlacing of zeros of linear combinations of classical orthogonal polynomials from different sequences
Author/Authors :
Driver، نويسنده , , Kathy and Jordaan، نويسنده , , Kerstin and Mbuyi، نويسنده , , Norbert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
6
From page :
2424
To page :
2429
Abstract :
We prove that the zeros of polynomials of consecutive degree in the sequences { r n } n = 1 ∞ and { s n } n = 1 ∞ are interlacing for n ∈ N , n ⩾ 1 where r n = p n + a n q n , s n = p n + b n q n − 1 , a n , b n ≠ 0 , a n , b n ∈ R and { p n } n = 1 ∞ and { q n } n = 1 ∞ are different sequences of Laguerre (respectively Jacobi) polynomials.
Keywords :
Interlacing properties , Zeros , Laguerre polynomials , Jacobi polynomials , Linear combinations
Journal title :
Applied Numerical Mathematics
Serial Year :
2009
Journal title :
Applied Numerical Mathematics
Record number :
1529326
Link To Document :
بازگشت