Title of article :
The existence and nonexistence of positive solutions to a discrete fractional boundary value problem with a parameter
Author/Authors :
Han، نويسنده , , Zhen-Lai and Pan، نويسنده , , Yuan-Yuan and Yang، نويسنده , , Dian-Wu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
6
From page :
1
To page :
6
Abstract :
In this paper, we study the existence and nonexistence of positive solutions for the boundary value problem with a parameter { − Δ ν y ( t ) = λ f ( t + ν − 1 , y ( t + ν − 1 ) ) , y ( ν − 2 ) = y ( ν + b + 1 ) = 0 , where t ∈ [ 0 , b + 1 ] N , 1 < ν ≤ 2 is a real number, f : [ ν − 1 , ν + b ] N ν − 1 × R → ( 0 , + ∞ ) is a continuous function, b ≥ 2 is an integer, λ is a parameter. The eigenvalue intervals of the nonlinear fractional differential equation boundary value problem are considered by the properties of the Green function and Guo–Krasnosel’skii fixed point theorem on cones, some sufficient conditions of the nonexistence of positive solutions for the boundary value problem are established. As applications, we give some examples to illustrate the main results.
Keywords :
Discrete fractional calculus , existence of solutions , Guo–Krasnosel’skii theorem , Eigenvalue Problem , Boundary value problem
Journal title :
Applied Mathematics Letters
Serial Year :
2014
Journal title :
Applied Mathematics Letters
Record number :
1529356
Link To Document :
بازگشت