Title of article :
Long time behavior of solutions of a diffusion–advection logistic model with free boundaries
Author/Authors :
Gu، نويسنده , , Hong and Lin، نويسنده , , Zhigui and Lou، نويسنده , , Bendong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
5
From page :
49
To page :
53
Abstract :
In this paper, we study the long behavior of solutions of a diffusion–advection logistic model with free boundaries in one dimensional space when the influence of advection is small. We give a spreading–vanishing dichotomy for this model, that is, the solution either converges to 1 locally uniformly in R , or to 0 uniformly in its occupying domain. Moreover, by introducing a parameter σ in the initial data, we exhibit the sharp threshold between vanishing and spreading, that is, there exists a value σ ∗ such that spreading happens when σ > σ ∗ , vanishing happens when σ ≤ σ ∗ .
Keywords :
Reaction–advection–diffusion equation , sharp threshold , free boundary
Journal title :
Applied Mathematics Letters
Serial Year :
2014
Journal title :
Applied Mathematics Letters
Record number :
1529388
Link To Document :
بازگشت