Title of article :
Sparse approximate solution of partial differential equations
Author/Authors :
Jokar، نويسنده , , Sadegh and Mehrmann، نويسنده , , Volker and Pfetsch، نويسنده , , Marc E. and Yserentant، نويسنده , , Harry، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
21
From page :
452
To page :
472
Abstract :
A new concept is introduced for the adaptive finite element discretization of partial differential equations that have a sparsely representable solution. Motivated by recent work on compressed sensing, a recursive mesh refinement procedure is presented that uses linear programming to find a good approximation to the sparse solution on a given refinement level. Then only those parts of the mesh are refined that belong to nonzero expansion coefficients. Error estimates for this procedure are refined and the behavior of the procedure is demonstrated via some simple elliptic model problems.
Keywords :
Sparse solution , Restricted isometry property , Mutual incoherence , dictionary , Hierarchical basis , Linear programming , partial differential equation , Compressed sensing
Journal title :
Applied Numerical Mathematics
Serial Year :
2010
Journal title :
Applied Numerical Mathematics
Record number :
1529455
Link To Document :
بازگشت