Title of article :
The hp-BEM with quasi-uniform meshes for the electric field integral equation on polyhedral surfaces: A priori error analysis
Author/Authors :
Bespalov، نويسنده , , Alexei and Heuer، نويسنده , , Norbert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
This paper presents an a priori error analysis of the hp-version of the boundary element method for the electric field integral equation on a piecewise plane (open or closed) Lipschitz surface. We use H ( div ) -conforming discretisations with Raviart–Thomas elements on a sequence of quasi-uniform meshes of triangles and/or parallelograms. Assuming the regularity of the solution to the electric field integral equation in terms of Sobolev spaces of tangential vector fields, and based upon the known quasi-optimal convergence, we prove an a priori error estimate of the method in the energy norm. This estimate proves the expected rate of convergence with respect to the mesh parameter h and the polynomial degree p.
Keywords :
hp-version with quasi-uniform meshes , boundary element method , Electric field integral equation , Time-harmonic electro-magnetic scattering , A priori error estimate
Journal title :
Applied Numerical Mathematics
Journal title :
Applied Numerical Mathematics