Title of article :
Lower spectral bounds by Wilsonʹs brick discretization
Author/Authors :
Yang، نويسنده , , Yidu and Bi، نويسنده , , Hai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
6
From page :
782
To page :
787
Abstract :
This paper discusses the Wilson element approximation for the eigenvalue problem of Laplace operator on n-dimensional polygonal domain ( n = 2 , 3 ) , and the main results are as follows: (1) We establish the relationship between the interpolation weak estimate of the Wilson element and the interpolation weak estimate of n-linear element. (2) We prove that 3-dimensional Wilsonʹs brick eigenvalues approximate the exact eigenvalues from below, and thereby make a new progress on such an open problem in the finite element method.
Keywords :
Lower spectral bounds , Wilsonיs brick , Eigenvalue
Journal title :
Applied Numerical Mathematics
Serial Year :
2010
Journal title :
Applied Numerical Mathematics
Record number :
1529491
Link To Document :
بازگشت