Title of article :
Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem
Author/Authors :
Adjerid، نويسنده , , Slimane and Baccouch، نويسنده , , Mahboub، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
903
To page :
914
Abstract :
In this manuscript we investigate the global convergence of the implicit residual-based a posteriori error estimates of Adjerid et al. (2002) [3]. The authors used the discontinuous Galerkin method to solve one-dimensional transient hyperbolic problems and showed that the local error on each element is proportional to a Radau polynomial. The discontinuous Galerkin error estimates under investigation are computed by solving a local steady problem on each element. Here we prove that, for smooth solutions, these a posteriori error estimates at a fixed time t converge to the true spatial error in the L 2 norm under mesh refinement.
Keywords :
a posteriori error estimation , discontinuous Galerkin , Hyperbolic problems
Journal title :
Applied Numerical Mathematics
Serial Year :
2010
Journal title :
Applied Numerical Mathematics
Record number :
1529505
Link To Document :
بازگشت