Title of article :
Computation of rational Szegő–Lobatto quadrature formulas
Author/Authors :
Bultheel، نويسنده , , Adhemar and Gonzلlez-Vera، نويسنده , , Pablo and Hendriksen، نويسنده , , Erik and Njهstad، نويسنده , , Olav، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
13
From page :
1251
To page :
1263
Abstract :
Szegő quadrature formulas are analogs of Gauss quadrature rules when dealing with the approximate integration of periodic functions, since they exactly integrate trigonometric polynomials of as high degree as possible, or more generally Laurent polynomials which can be viewed as rational functions with poles at the origin and infinity. When more general rational functions with prescribed poles on the extended complex plane not on the unit circle are considered to be exactly integrated, the so-called “Rational Szegő Quadrature Formulas” appear. In this paper, some computational aspects concerning these quadratures are analyzed when one or two nodes are previously fixed on the unit circle.
Keywords :
Rational Szeg? quadrature , Rational Szeg?–Lobatto quadrature , Maximal domain of validity , Rational Szeg?–Radau quadrature
Journal title :
Applied Numerical Mathematics
Serial Year :
2010
Journal title :
Applied Numerical Mathematics
Record number :
1529558
Link To Document :
بازگشت