• Title of article

    A structure preserving approximation method for Hamiltonian exponential matrices

  • Author/Authors

    Agoujil، نويسنده , , S. and Bentbib، نويسنده , , A.H. and Kanber، نويسنده , , A.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2012
  • Pages
    13
  • From page
    1126
  • To page
    1138
  • Abstract
    The approximation of exp ( A ) V where A is a real matrix and V a rectangular matrix is the key ingredient of many exponential integrators for solving systems of ordinary differential equations. In this paper we give an appropriate structure preserving approximation method to exp ( A ) V when A is a Hamiltonian or skew-Hamiltonian 2n-by-2n real matrix. Our approach is based on Krylov subspace methods that preserve Hamiltonian or skew-Hamiltonian structure. In this regard we use a symplectic Lanczos algorithm to compute the desired approximation.
  • Keywords
    Exponential matrix , Hamiltonian matrix , orthogonal , Symplectic
  • Journal title
    Applied Numerical Mathematics
  • Serial Year
    2012
  • Journal title
    Applied Numerical Mathematics
  • Record number

    1529568