Title of article :
Variable step-size fractional step Runge–Kutta methods for time-dependent partial differential equations
Author/Authors :
Portero، نويسنده , , L. and Arrarلs، نويسنده , , A. and Jorge، نويسنده , , J.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
14
From page :
1463
To page :
1476
Abstract :
Fractional step Runge–Kutta methods are a class of additive Runge–Kutta schemes that provide efficient time discretizations for evolutionary partial differential equations. This efficiency is due to appropriate decompositions of the elliptic operator involving the spatial derivatives. In this work, we tackle the design and analysis of embedded pairs of fractional step Runge–Kutta methods. Such methods suitably estimate the local error at each time step, thus providing efficient variable step-size time integrations. Finally, some numerical experiments illustrate the behaviour of the proposed algorithms.
Keywords :
alternating direction implicit , domain decomposition , Fractional step Runge–Kutta method , parabolic problem , Variable step-size
Journal title :
Applied Numerical Mathematics
Serial Year :
2012
Journal title :
Applied Numerical Mathematics
Record number :
1529622
Link To Document :
بازگشت